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Results of Fourier transform infra-red (FTi.r.) dichroism measurements of segmental orientation in model 
poly(dimethylsiloxane) (PDMS) networks of different molecular weights between junctions are interpreted 
in terms of the constrained junction model of rubber elasticity. The theory shows quantitative agreement 
with experimental data, without the necessity of adjusting any parameter. Based on this agreement, one 
may conclude that in PDMS networks, the dependence of orientation on deformation results from the 
non-affine transformation of junction points, and that local intermolecular contributions to segmental 
orientation are not significant. In the case of less flexible chains such as polyisoprene on the other hand, 
intermolecular contributions to segmental orientation might be relatively more important. Correspondence 
between birefringence experiments and segmental orientation is formulated which permits direct quantitative 
comparison between the birefringence and FTi.r. dichroism experiments. 

(Keywords: poly(dimethylsiloxane) networks; segmental orientation; FTi.r. measurements; constrained junction theory of 
rubber elasticity) 

I N T R O D U C T I O N  classical phantom network model. The predictions 
of this theory, as well as of a previous similar 

Recently we have reported results of Fourier transform treatment of segmental orientation in terms of strain 
infra-red (FTi.r.) dichroism measurements of segmental birefringence 6, showed satisfactory agreement with 
orientation in well characterized poly(dimethylsiloxane) experimental data on various elastomeric systems 7,s 
(PDMS) networks formed by end-linking 1. The values of obtained by different experimental techniques. The strain 
segmental orientation were obtained in five networks of dependence of segmental orientation and birefringence 
different molecular weights Me between junctions, observed in all of the experiments closely followed 
ranging from 2000 to 23 000. The measured values of the predictions of the constrained junction model of 
orientation were found to lie between the predictions of amorphous networks 9'*°. A precise theoretical model 
the phantom and affine network models. It was describing the state of deformation and segmental 
suggested 1 that this behaviour was similar to that from orientation in network chains seems to be of particular 
the predictions of the constrained junction or the importance at the present time when higher resolution 
constrained chain models 2 but a detailed analysis was and precision is provided by advanced spectroscopic 
not presented. In the present paper, we interpret the techniques such as 2H n.m.r., two-dimensional i.r.** and 
results of the F Ti.r. segmental orientation measurements modulated FTi.r.12 in determining segmental orientation. 
in terms of the constrained junction theory of amorphous The present interpretation of segmental orientation of 
elastomeric networks. This presentation is prompted by PDMS in terms of the constrained junction model and 
a recent paper by Brereton a suggesting that the doublet the discussion of factors affecting this phenomenon is an 
structure observed in 2H n.m.r, experiments of Sotta and attempt along this direction. 
Deloche 4 on segmental orientation in PDMS networks The fact that experimental values: of segmental 
results from the strain dependence of the fluctuations of orientation in PDMS networks are in quantitative 
junction points in networks. The molecular mechanisms agreement with predictions from the molecular theory 
contributing to segmental orientation considered by based on the specific structural features of the chains is 
Brereton have been incorporated s, in great detail, into an improvement over previous treatments of segmental 
the model of a network that exhibits deviations from the orientation which have been based on the affinely 

deforming chain and the acceptance of the Kuhn length. 
* To whom correspondence should be addressed For this reason, a large portion of the present paper is 
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devoted to a review of recent developments in the 0.03 . . . . . . . . .  
theory of segmental orientation. The agreement and 
disagreement between theory and the present data for 
PDMS are discussed critically. In the final section, 
segmental orientation is related to strain induced 
birefringence in networks, and factors affecting the 0.02 
governing parameters are discussed. 

co 

APPLICATION OF THE CONSTRAINED 0.01 / ~ 
JUNCTION MODEL TO SEGMENTAL 
ORIENTATION IN PDMS NETWORKS 

Comparison of the phantom and affine model predictions 
with experimental results o.oo 

The orientation function S for segmental orientation o.oo o.ol 0.02 
in phantom and affine network models under uniaxial 1/n 
extension is written in terms of the extension ratio 2 as: Figure 1 Dependence of the configurational factor Do on chain length. 

S p h a n t o  m : Do(1 -2/~bX22 -2 -1 )  Points represent results from FTi.r. experiments from reference 1, with 
dry P D M S  networks. The two curves represent the affine and phantom 

= Do(1 _ 2/c]}Xv2e/v2)2/3(Ix2 __ ~ -  1) network limits obtained with the use of the RIS formalism 

Saffin e = 0 0 ( 2 2  __ ,~ - 1) = Do(V2c/V2)2/3(Ot2 _ ~ -  1) (1) 
allowed to fluctuate, with amplitudes depending on 

where 2 is defined as the ratio of the final length of the the network topology as indicated by the junction 
network in the direction of stretch to the length in the functionality. The deformation at the molecular level and 
state of reference obtained during the formation of the therefore the segmental orientation are less affected by 
network. ~t is the ratio of the final length to the initial, macroscopic strain. 
undistorted length. In the case of samples swollen prior According to the theory 14, D O varies as the inverse 
to deformation, the initial length is that of the swollen of the number of bonds n in the chain between 
state. VEc and v E have their usual meanings as the volume two junctions. Thus, a plot of the reduced orientation 
fraction of polymer during crosslinking and during the function as a function of n -1 gives a straight line 
stretching experiment, respectively, q~ is the functionality as shown in Figure 1. Both lines are drawn by 
of junctions and D O is the configurational factor given using equation (3) for a tetrafunctional PDMS network 
by the theory in the Nagai formulation for affine networks with the proper value of D O obtained from the 
as2 '13:  previous rotational isomeric state (RIS) calculations 1. 

D O =(3(r 2 cos 2 (I))o/(r2)o - 1)/10 (2) Here, D O is representative of the orientation of vectors 
along consecutive oxygen atoms. The points represent 

Here, • is the angle between a unit directional vector u o results of FTi.r. experiments on end-linked PDMS 
affixed to a chain segment whose orientation is being networks obtained previously ~ from the slopes of the 
considered and the chain end-to-end vector r. The angular straight lines passing through S versus 22 - 1/2 points. 
brackets denote the ensemble average and the subscript The experimental data represent, like the calculations, 
zero indicates that averaging is performed for chains the orientation of vectors along the consecutive oxygen 
in the unconstrained state. Defined in this manner, bonds 15.. The occurrence of the experimental points 
the parameter D O reflects the intrinsic orientational between the affine and the phantom network predictions 
behaviour of a single chain which is not subject indicates that the state of deformation at the molecular 
to any orientational correlations with the spatially level is intermediate between those in the phantom and 
neighbouring chains. Both in the phantom and the affine the affine network models. This conclusion is in 
network models, the chains are assumed to be free of agreement with the predictions of the constrained 
any intermolecular effects. The difference of the two junction model for segmental orientation. In the next 
expressions in equation (1) arises from the difference of section, we briefly review the molecular aspects of the 
the state of deformation at the molecular level in the constrained junction model. 
phantom and the affine models. 

For convenience, the data is usually presented in terms Summary of the constrained junction model and application 
of the reduced orientation function IS] by dividing the to segmental orientation 
second and fourth terms in equation (1) by (v2c/v2) 2t3 The detailed picture of the constrained junction model 
(~2 _ l/c0 as: of amorphous networks follows from the work of Flory 9 

S _~(1-2/~)D o Phantom according to which intermolecular contributions are 
[S]~(V2c/V2)2/3(o~2--of,-1 ) { D O Affine represented in the form of spring-like constraints 

hindering the fluctuations of junctions. These constraints 
(3) 

This operation removes the deformation and swelling *FTi.r .  experiments measure the orientation of the vector bisecting the 
CHa-Si~CH a bond. Passage to the orientation of the vector along the 

dependence of the data. The new variable [S] is a 049 direction is made by the expression: 
function of D O and junction functionality only. In the 
affine network, the junctions are embedded in their IS] R-I  2 

surroundings and are fully affected by the macroscopic g+2 (3 cos 2 fl-1) 
strain. In the phantom network model, the junctions are where fl is the angle (=  90 °) between the two directions stated above 
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surroundings results in a further orientation in the 
domain. 

A B The strength of the constraints varies inversely 
with the size of the constraint domain. Infinitely 
strong constraints do not permit fluctuations of the 
junction at all and the junctions are securely embedded in 
their environments. This extreme case represents the 

B affine network model. The strength of the constraints 
diminishes as the constraint domain enlarges. As the 

(a) / / . ~ ) ~ ,  f . ~ ,  network is stretched, the constraint domains deform into 
ellipses and their effect on the junction becomes more 
anisotropic. The strength of intermolecular constraints 

- in the undeformed network is represented in the theory 
by the parameter x defined as: 

(AR2)o 
(b) e x =  (As2)------ ~ (4) 

where the numerator and the denominator represent the 
Figure 2 (a) Schematic representation of a network chain between mean square radii of fluctuation domain of the junction two junction points A and B. Thick and thin curves represent the 
instantaneous configuration of a real chain and that of a phantom in the phantom network and the constraint domain, 
model chain, respectively. Arrows indicate the constraints from the respectively 9'1°. In terms of the molecular weight, Me,  
surroundings. (b) Constrained junction chain in which the action from between junctions and v2c, x is given by the relation: 
the surroundings is concentrated at the junctions only. Junctions 
fluctuate within the indicated elliptic domains referred to as the ~c= CM~/2v2c (5) 
constraint domains 

with the proportionality constant C,,~ 0.07 obtained from 
previous data on PDMS networks 8'18. 

are assumed to result from entanglements among chains In the constrained junction model, the mean squared 
in the connected network structure. In the absence of extension ratio, A~ at the molecular level along the 
connectivity, they are expected to vanish. The fact that direction t readsr: 
such intermolecular effects are concentrated at the A~=(1-2/q~)2~+(2/dpXl+Bt) t = x , y , z  (6) 
junctions is of mathematical convenience. A later 
treatment ~6, referred to as the constrained chain model, where Bt is 
assumed the constraints to operate directly on the chains. B, = xz(2~ - 1)/(x + 22) z t = x, y, z (7) 
The general features of rubber elasticity and birefringence 
predicted by this model are qualitatively similar to those The orientation of chain segments results from the 
of the constrained junction model 16'w. anisotropy of deformation at the molecular level. 

A somewhat pictorial representation of an entangled The orientational field resulting from the anisotropic 
chain AB in a network is shown in Figure 2a. The line distortion of the constraint domains may further induce 
AB indicates the time average location of the chain ends an orientation, as has been previously suggested 6. 
as would be obtained in the phantom network. The thick Accordingly, the distortion of the constraint domains is 
curve is representative of an instantaneous configuration described by the three quantities: 
of the chain. The excursion of the chain to positions away 
from the requirements of the phantom network in the ®2 = 1 + 2~BJx t = x, y, z (8) 
deformed state results in the 'spring-like' reactions of the In uniaxial tension the state of segmental orientation is 
neighbouring chains as shown by the various arrows in 
the figure. These are intermolecular forces absent in the described by the two expressionsS: 

- OoEA x - ( h ,  + h z ) /2 ]  phantom and the affine network models. In Figure 2b, S ' -  2 2 2 
these forces are concentrated on the junctions only. Each S" = eD0[®~ - (®2 + 02)/2] (9) 
junction is assumed to be under the action of two forces: 
(1) the intramolecular elastic force from the network Here, the coefficient e is adopted to represent the strength 
connectivity, trying to restore the junction to its mean of the local orientational field arising from the distortions 
position as obtained in the phantom network; and (2) of the constraint domains. The total orientation is the 
another spring-like force arising from the distortions of sum of S' and S". Using equations (6), (8) and (9), the 
the surroundings, trying to restore the junction to a reduced orientation defined by equation (3) for uniaxial 
point referred to as the centre of constraints. In the extension is written in the following form: 
absence of constraints, the junction fluctuates in a 
spherical domain with an average squared radius of ~ (v~/v2o~v 2/3 
( A R 2 ) o  ---- [(t~ --  1)/¢(¢ - 2)] ( r 2 ) o  w h i c h  is independent IS] =(1 - 2/~b)Do[1 -f (~b/2-1}{ct 2 - = -  ') [Bx-B'+(dpe/2r)(22Bx-2~B')]t) 
of macroscopic strain 9. In the absence of network (10) 
connectivity, the junction is assumed to fluctuate in a 
region referred to as the constraint domain. The When x = 0, as Bt scales with ~c 2 for small x, the term in 
macroscopic strain is assumed to deform the constraint square brackets on the right-hand side of equation (10) 
domains affinely. The two ellipses at the extremities of becomes zero and the reduced orientation for the 
the network chain in Figure 2b are drawn to indicate the phantom network model is recovered. The term in square 
spatial range of constraint domains. The distortion of the brackets also goes to zero as ~ increases indefinitely. 
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Comparison of  experimental data and the constrained 0.02o . . . . . . . . .  
junction model predictions ~ -  " 

Results of  experiments on samples A and B in Table 
1, with respective molecular  weights Me = 12 000 (open O.OlS . . . .  : . ~ - - -  
symbols) and 23 000 (closed symbols) are shown in Figure 
3. In  this figure, the reduced orientat ion is presented as 
a function of  =-1.  Experimental  points at lower values (/3 0.010 
of ~t showed excessive scatter and are therefore not  
included. The straight lines are least squares fits to the _ ~ . ~ r O  
points. The curves are calculated from equat ion (10) with 
the values of  the parameters  listed in Table 1. The o.oos 
tendency of IS]  values to decrease with increasing ~ is ~ a  [] 
clearly seen. This feature is also seen in the birefringence ~ . -  - - - - ' A - ~ -  --" [] [] 
data  of reference 8. It  is interesting to note  that  the 0t- 1 0 . a o a  . . . . . . . .  
intercepts of  the straight lines in Figure 3 meet with the 0.0 0 .2  0.4 0.6 0.8 .0 
intercepts of  the theoretical curves obtained f rom RIS 1/ct 

calculations 1. It  should be noted that  the values for x Figure 4 Reduced orientation IS] as a function of ct -1. Open triangles, 
and e in Table 1 follow from previous experimental da ta  s, circles and squares are the experimental data for dry networks with 
thus the theory contains no adjustable parameters.  The Mo = 2000, 10 000 and 23 000 as labelled in the figure. The solid circles 
experimental points and theory tend to diverge at smaller represent results of birefringence experiments with Mc = 7600. Curves 
values of  ~. The theoretical curves level off as ct = 1 is are obtained with the constrained junction model, using the variables 
approached  while the experimental IS]  values increase, listed in Table 1. The broken curve is obtained for sample D using x = 1 

exhibiting a Mooney-Riv l in  type behaviour.  The largest 
discrepancy between the theory  and the straight lines 

th rough  the data  is at ~t = 1 and amounts  to 25 and 26% 
for samples A and B, respectively. 

Table 1 Values of parameters used in the calculations of orientation Predictions of  the constrained junct ion  model  and 
from equation (10) experimental da ta  are further compared  in Figure 4. The 
Sample Mc x" [s]ph b e c open triangles, circles and squares are f rom FTi.r. 

dichroism experiments 1 for the respective networks with 
A 23000 10.7 0.001045 0.5 Me=2000 ,  10000 and 23000 as labelled in the figure. 
B 12000 7.7 0.002000 0.5 The closed circles represent results of  birefringence 
c 10000 7.0 0.002405 0.5 experiments. The birefringence data  are multiplied by a 
D 2000 3.1 0.012025 0.0 
E a 7600 5.5 0.004050 0.5 proport ional i ty  constant  inasmuch as birefringence and 

orientat ion are related by a constant  coefficient as 
= Calculated from equation (5) described in detail below. 
bObtained from RIS calculations 1 of Do The parameters  used in the calculation of  the curves 
CThe value of 0.5 was obtained in previous work 8 on stress-strain 
isotherms of PDMS according to equat ion (10) are given in Table 1. Except 
a F r o m  b i re f r ingence  d a t a  8 for the value e = 0 for sample D, no parameter  is adjusted 
The networks were tetrafunctional, tp=4. Crosslinking and measurements in the calculations. The max imum discrepancy between 
were performed in the bulk state for all samples. Results 2s for the theory and experiment is for sample D with the smallest 
network with Mc = 5000 have not been included because of excessive M e. The curve is calculated from theory with x = 3.1 
scatter in the data 

resulting from equat ion (5). The theoretical prediction for 
I-S] is ~ 26% higher than the experimental value at ~ = 1. 

. . . . .  I It is calculated that  the choice of  x = 1.0 instead of  3.1 
o.oos / " /  leads to a good  agreement with experiments, as shown 

o , / by the broken curve in Figure 4. This observat ion is in 
0.004 / " t o  line with results of  computer  simulations by Adolf  and 

,00 ~ O  . . _ - ~ ~  Cur ro  19 where a stronger dependence of  x on Me is 
predicted instead of  that  given by equat ion (5). 

0 . 0 0 3  / J  / - The curve obtained from birefringence experiments in 
, - j  _ • ~ ..- Figure 4 closely agrees with the deformation dependence 

~ / "  • ~ ~ ~ expected from equat ion (10). The agreement  is much 
0 . 0 0 2  ~ . l ~ l ~ -  • better than that  of  the FTi.r. data, most  p robably  due 

to large scatter in the latter. A possible source of  the 
0.001 difference between birefringence and FTi.r. results may  

be due to the procedures in measuring the deformation.  
0.000 , , , , , , , , The birefringence data  were obtained by the successive 

0.0 0.2 0.4 0.6 0.8 1.0 application of  dead weights to the sample and measuring 
1/0~ changes in length. The measurements  in FTi.r. were made 

Figure 3 Reduced orientation [S] as a function of ct- 1. Open and by keeping the two ends of  the sample fixed at specified 
closed circles represent the experimental data for dry PDMS network distances. Fur thermore,  orientat ion measurements  in 
chains of M~=12000 and 23000, respectively. Curves result from the FTi.r. required rota t ion of  the stretched sample parallel 
constrained junction model, using the variables listed in Table 1. Best 
fitting straight lines through the experimental data are also shown and perpendicular  to the direction of  polarizat ion of the 
(broken line) light source. 
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INTRA- A N D  I N T E R M O L E C U L A R  0.03 . . . . . . . .  
C O N T R I B U T I O N S  TO S E G M E N T A L  v2=1.0 
O R I E N T A T I O N  

Orientation of segments in a real network differs from 
that in the phantom model in two respects, according to o.02 
equation (10). First, the chains in the real network deform 0 8___e8 
more than those in the phantom model depending on ~"  
the magnitude of the x parameter. Secondly, segments A t, 0.81 
experience a local orientation field resulting from the 0.01 - 
distortion of the constraint domains. The latter is 
introduced into the theory in an ad hoe manner by the o fl 0.56. 1.0 
coupling parameter  e in equation (10). In addition to " = ^ -  '~ ~ v  
these two sources of orientation, there may exist local 

0.00 , I , I , I , I 
interchain interactions among neighbouring segments. 0 . 0  0 . 2  0.4 0.6 0.8 .0 
Such interactions exist inherently due to the linear 1 /o t  
connectivity of the chains, in the network as well as in 
the bulk state, and result in the enhancement of segmental Figure 5 Effect of swelling on segmental orientation of deformed PIP 
orientations 2°. In previous work  5'21'22, this type of and PDMS networks. The three upper sets of experimental data are 
intermolecular interaction has been attributed to the for PIP networks with the indicated volume fractions v2 during 

deformation. The data points on the lowest curve are measured for 
tendency of two neighbouring segments to align as PDMS networks with v2 = 1.0 (solid circles) and 0.56 (open circles). The 
obtained in nematic liquid crystalline systems. Recent two curves for v2 = 1.0 are obtained from the constrained junction 
treatment of networks by a lattice model 23'24 shows that theory with no adjustable parameters. The intermediate curves 
such nematic-like interactions exist in semiflexible chains necessitated readjustment of the front parameter D to account for 
with relatively large length-to-width ratios of their Kuhn intermolecular effects 
segments. Such interactions are therefore specific to the 
system and should be negligible in highly flexible chains 
such as PDMS. In any case, their action may be brought entanglements. Strong contributions f r o m / ) i  have been 
into the theory 5 by allowing for the distortion of the unit reported previously 7 for the orientation of polyisoprene 
vector Uo of the isolated chains by an amount  Au such (PIP) networks by polarized fluorescence measurements. 
that the modified configurational factor D becomes: Results of FTi.r. experiments on swollen PDMS networks 

reported in the paper 2s show however that D1 is not 
D={3([ro(Uo+AU)]2)o/(r2)o-1}/ lO significant for this system. The effects of swelling on 

= D O + 3(Au 2 COS 2 6 ) / 1 0 -  D O + Din t (11) segmental orientation are compared in Figure 5 for P IP  
and PDMS networks. The upper set of solid points show 

Here 6 is the angle between Au and r. The intermolecular results of measurements on a dry P IP  network. The curve 
contribution Di,t is, according to Jarry and Monnerie 21: through the points is obtained according to the 

V constrained junction model 7. Results for the network in 
Din t = D O (12)  1 - V  the swollen state with v2=0.88 and 0.81, are shown by 

the open circles and triangles, respectively. A very strong 
Here, V reflects the intensity of interactions between decrease in FS] is obtained by small amounts of swelling 
orientations of neighbouring segments. According to the as seen in the figure. The theoretical curves obtained with 
lattice model 23'24 V equates to: /)2 = 0.88 and 0.81 showed imperceptible differences from 

1 7"- 1 that of the dry network. It was not therefore possible to 
V= t (13) fit a theoretical curve through the data for/-)2 ~;~ 1 without 

(64/5x)(1 - x/xa) + 1 5 modifying the front parameter  D. The two curves through 
Here, 7" is the reduced temperature accounting for the the data points for the swollen samples in Figure 5 are 
strength of the nematic interactions, x is the length-to- obtained by choosing D=0.008 and 0.0066 for v2 =0.88 
width ratio of Kuhn segments composing the network and 0.81, respectively. This decrease in D may be 
chains and xa is the critical value of x above which attributed to the disappearance of intermolecular effects 
the unperturbed system is totally anisotropic. The upon swelling, as delineated in equation (14). The lowest 
intermolecular contribution is expected to vanish readily curve and the corresponding data points are obtained 
by swelling the network with a suitable solvent, for the PDMS network 2s B with v 2 = 1 and 0.56. 

A further contribution to orientation due to trapped The differences between the two data sets are not 
entanglements has been suggested by Herz et al. 25 and discernible in the figure in parallel with the predictions 
Deloche e t a / .  26'27. According to their theory, such of the constrained junction model. This indicates that 
contributions persist even in the swollen network, but intermolecularcontributions to the configurational factor 
their effects should vanish if the networks are originally D are negligible in PDMS networks. 
formed in the highly diluted state. One may therefore In Figure 6, the effect of v2c on segmental orientation 
separate the contributions from intermolecular sources in PDMS networks is shown 2a. Solid circles are obtained 
into a local and an entanglement component  and for sample B formed at v2¢ = 1.0. The open circles are for 
rewrite equation (11) in the following form as a first the network formed at v2c=0.7. The best fitting straight 
approximation: lines through the data points are also shown. The curve 

D = Do + D1/)2 "-F D2/)2c (14) is obtained from the constrained junction model for both 
v2¢ = 1.0 and 0.7. While the theory predicts no effect on 

Here, D1 reflects the contributions from localintermolecular reduced segmental orientation from dilution during 
correlations and D 2 is due to the field induced by trapped formation, the experimental data show some decrease. 
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vkT { (vzlv2~) z/s o . o o 6  . . . . . . . . .  =(1 - 2/~b)--~-- C 1-t 
(~/2-1)(~2-ct  -1 ) 

• t o.oo4 x [Bx-  B, + (cke/2xX,~2~Bx - ,~2rB,)] (15) 

~" where v/V o is the number of chains per unit volume in 
the reference state, k is the Boltzmann constant, T is 

0.002 the absolute temperature and C is the stress-optical 
coefficient given by: 

C = 2n(ri 2 + 2)2F°/27~kT (16) 

0.000 , , , , , , Here, ~ is the mean refractive index of the network and 
0.0 0.2 0.4 0.6 o.a .0 F ° refers to the intrinsic optical anisotropy of a given 

l/ix chain. The superscript zero indicates that the optical 
anisotropy is obtained in the absence of intermolecular 

Figure 6 Effect of v2c on segmental orientation in PDMS. The solid interactions, i.e. in the state swollen with an isotropic 
and open circles represent IS] values measured for the respective values solvent. 
of v2c = 1.0 and 0.7. Best fitting straight lines and the theoretical curve 
from the constraint junction model are also displayed The expression in braces on the right-hand side of 

equation (15) is identical to the reduced orientation 
expression given by equation (10). Accordingly, the 
experimental data available for the reduced birefringence 

The magnitude of the decrease, however, is within [Anxy] may be transformed into [S] by using the simple 
experimental error bounds, relationship: 

The absence of contributions from D 1 and D 2 terms 

D° [Anxy ] (17) to the configuration factor D in PDMS networks justifies IS] = CvkT/l/o 
the close agreement between measured orientations and 
the RIS calculations performed in previous work 1. 

In the limit as ct- 1 approaches zero, [Anxy ] assumes its 
phantom network limiting value: 

RELATIONSHIP BETWEEN SEGMENTAL vkT 
ORIENTATION AND STRAIN BIREFRINGENCE [Anxr-lphantom=(1-2/q~) Vo C (18) 

Correspondence between the reduced birefringence and which provides a direct method of evaluating the factor 
reduced orientation function CvkT/Vo appearing in the denominator of equation (17). 

Measurement of strain birefringence of deformed It is noted from equations (17) and (18) that the phantom 
networks is an alternative technique for determining network limit [S]p~,,tom which is given by equation (3), 
the degree of orientation of chain segments. This is recovered by extrapolating the I-S] results to ct-1 = 0. 
technique detects the changes in the components of the 
polarizability tensor of chain units under deformation. Relationship between the optical anisotropy F ° and the 
As will be shown in this section, these changes configurational factor Do for PDMS 
may be related, quantitatively, to the configurational From molecular considerations F ° is expressed in 
factor Do introduced above for characterizing segmental terms of the anisotropic part &i of the polarizability tensor 
orientation, of the structural units of the chain asS*: 

In FTi.r. experiments, the orientation of a specific 
9 direction rigidly affixed to the chain is measured directly. F° = i0  ~/(rT~ir>°/(r2>° (19) 

The components of the polarizability tensor, on the other 
hand, include contributions from segments neighbouring 
a chosen segment. In the bulk state, mutual alignment The anisotropic part of the polarizability tensor may be 
of neighbouring segments therefore contributes to the defined with respect to a coordinate system xyz, affixed 

to the repeat unit of the PDMS chain. At a given measured birefringence. Thus, this technique is very 
sensitive to intermolecular effects, and its correspondence configuration of the chain, the angles between the x, y 
to FTi.r. experiments can be made only in the highly and z axes of the ith unit and the chain vector are defined, 
diluted state of the network where the chains are respectively, by q~ix, ~b~y, tk~z. In the approximation of 
sufficiently separated from each other. Another requirement tetrahedral symmetry about Si and C atoms, selecting 
for comparison is that the diluent should be isotropic the x-axis along the O...O direction, the y-axis perpen- 
inasmuch as a slight anisotropy of the solvent molecules dicular to it, in the plane of the Si-O bond and 
will superpose on the optical anisotropy tensor of the the z-axis parallel to CH3...CH3, ~ti for each of the 
chain units, dimethylsiloxane structural units 1 <<. i<~ n/2 in a PDMS 

Experimentally a, the difference Anxy=nx-ny in the chain of n backbone bonds is: 
refractive index of a stretched sample along the direction &~ = Act diag(2/3, 0, - 2/3) (20) 
of stretch x and the lateral direction y is measured. 

estimated for PDMS to be equal to 0.018 A3. According to theory, the reduced birefringence [Anxr] is where Act is 8 
given by the expression6: 

Anxy(V2/V2c) l/3 * The symbol :t is retained for the polarizability tensor to conform with 
[Anxr] = the conventional notat ion in literature and should not  be confused with 

( ~ 2  ct-1) the scalar ct representing the stretch ratio 
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Equation (19) may be written in terms of the angles ~b~=, and measurements conforms with the front factor 
~biy, ~b~= by projecting the tensor &~ along the end-to-end (v2o/v2) 2/3 as delineated in equation (1). 
vector as: 4. The agreement between theory and experiments is 

poorer with decreasing Me, which may be attributed 
FO 3 A s _  2 2---(--~-o)"((r5 r ' )  "7 c°s2cb 'x) - (r2c°s2q~'=))  (21) to the inadequacy of equation (5) to evaluate 

the parameter x at high crosslinking densities, as 
previously pointed out by Adolf and Curro 19. 

Upon rearrangement, equation (21) reduces to: 
5. Birefringence measurements of networks swollen with 

F ° = n Act[Do, n -Do,±]  = 3n AaD o (22) optically isotropic diluents may be readily employed 
to estimate segmental orientation and may be 

Here Do,ii and Do,± refer to the orientational configurational interpreted with the same mathematical formulation, 
factors associated with the vectors along the O...O as presented above. 
direction and perpendicular to it, respectively. Inasmuch 6. Measurements of orientation in PIP networks indicate 
as i.r. dichroism experiments 15 measure the orientation that local intermolecular contributions to orientation 
of vectors along the O...O direction, Do, ii is identical to are significant as demonstrated by the rapid decrease 
Do and Do,± is equal to -2Do.  in IS] with swelling, in contrast to PDMS networks. 

This brings into consideration the existence of stronger 
Comparison with experiments intermolecular effects on segmental orientation in less 

Birefringence experiments performed with PDMS flexible chains. 
networks of Mc=7600 in optically isotropic diluents 
yield s F~=0.04/~ 3 with carbon tetrachloride and 
F°=0 .14A 3 with tetraethyl methane. These values are ACKNOWLEDGEMENT 
much smaller than those measured in the bulk state or This work was supported by the NATO grant no. CRG 
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