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Results of Fourier transform infra-red (FTi.r.) dichroism measurements of segmental orientation in model
poly(dimethylsiloxane) (PDMS) networks of different molecular weights between junctions are interpreted
in terms of the constrained junction model of rubber elasticity. The theory shows quantitative agreement
with experimental data, without the necessity of adjusting any parameter. Based on this agreement, one
may conclude that in PDMS networks, the dependence of orientation on deformation results from the
non-affine transformation of junction points, and that local intermolecular contributions to segmental
orientation are not significant. In the case of less flexible chains such as polyisoprene on the other hand,
intermolecular contributions to segmental orientation might be relatively more important. Correspondence
between birefringence experiments and segmental orientation is formulated which permits direct quantitative
comparison between the birefringence and FTir. dichroism experiments.
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INTRODUCTION

Recently we have reported results of Fourier transform
infra-red (FTi.r.) dichroism measurements of segmental
orientation in well characterized poly(dimethylsiloxane)
(PDMS) networks formed by end-linking®. The values of
segmental orientation were obtained in five networks of
different molecular weights M_ between junctions,
ranging from 2000 to 23000. The measured values of
orientation were found to lie between the predictions of
the phantom and affine network models. It was
suggested® that this behaviour was similar to that from
the predictions of the constrained junction or the
constrained chain models? but a detailed analysis was
not presented. In the present paper, we interpret the
results of the FTir. segmental orientation measurements
in terms of the constrained junction theory of amorphous
elastomeric networks. This presentation is prompted by
a recent paper by Brereton® suggesting that the doublet
structure observed in ?H n.m.r. experiments of Sotta and
Deloche* on segmental orientation in PDMS networks
results from the strain dependence of the fluctuations of
junction points in networks. The molecular mechanisms
contributing to segmental orientation considered by
Brereton have been incorporated®, in great detail, into
the model of a network that exhibits deviations from the
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classical phantom network model. The predictions
of this theory, as well as of a previous similar
treatment of segmental orientation in terms of strain
birefringence®, showed satisfactory agreement with
experimental data on various elastomeric systems’'8
obtained by different experimental techniques. The strain
dependence of segmental orientation and birefringence
observed in all of the experiments closely followed
the predictions of the constrained junction model of
amorphous networks®!%. A precise theoretical model
describing the state of deformation and segmental
orientation in network chains seems to be of particular
importance at the present time when higher resolution
and precision is provided by advanced spectroscopic
techniques such as ?H n.m.r., two-dimensional i.r.'* and
modulated FTi.r.'? in determining segmental orientation.
The present interpretation of segmental orientation of
PDMS in terms of the constrained junction model and
the discussion of factors affecting this phenomenon is an
attempt along this direction.

The fact that experimental values' of segmental
orientation in PDMS networks are in quantitative
agreement with predictions from the molecular theory
based on the specific structural features of the chains is
an improvement over previous treatments of segmental
orientation which have been based on the affinely
deforming chain and the acceptance of the Kuhn length.
For this reason, a large portion of the present paper is



Segmental orientation in deformed networks: B. Erman et al.

devoted to a review of recent developments in the
theory of segmental orientation. The agreement and
disagreement between theory and the present data for
PDMS are discussed critically. In the final section,
segmental orientation is related to strain induced
birefringence in networks, and factors affecting the
governing parameters are discussed.

APPLICATION OF THE CONSTRAINED
JUNCTION MODEL TO SEGMENTAL
ORIENTATION IN PDMS NETWORKS

Comparison of the phantom and affine model predictions
with experimental results

The orientation function § for segmental orientation
in phantom and affine network models under uniaxial
extension is written in terms of the extension ratio 4 as:

Sphanlom=D0(1 —2/4))(}“2 —Ai” 1)
=Do(1 =2/PNv3./v2)* (0> —a™ 1)
Sattine =Do(A* —A71)= 1-)0(')2c/1’2)2/3(°‘2 —ah) (1)

where A is defined as the ratio of the final length of the
network in the direction of stretch to the length in the
state of reference obtained during the formation of the
network. « is the ratio of the final length to the initial,
undistorted length. In the case of samples swollen prior
to deformation, the initial length is that of the swollen
state. v, and v, have their usual meanings as the volume
fraction of polymer during crosslinking and during the
stretching experiment, respectively. ¢ is the functionality
of junctions and D, is the configurational factor given

by the theory in the Nagai formulation for affine networks
2,13.
as®!:

Dy =(3<r? cos® ®}/<r?*>o—1)/10 03]

Here, ® is the angle between a unit directional vector u,
affixed to a chain segment whose orientation is being
considered and the chain end-to-end vector r. The angular
brackets denote the ensemble average and the subscript
zero indicates that averaging is performed for chains
in the unconstrained state. Defined in this manner,
the parameter D, reflects the intrinsic orientational
behaviour of a single chain which is not subject
to any orientational correlations with the spatially
neighbouring chains. Both in the phantom and the affine
network models, the chains are assumed to be free of
any intermolecular effects. The difference of the two
expressions in equation (1) arises from the difference of
the state of deformation at the molecular level in the
phantom and the affine models.

For convenience, the data is usually presented in terms
of the reduced orientation function [S] by dividing the
second and fourth terms in equation (1) by (v,./v,)*3
(2% —1/0) as:

[S1= S _ {(1 ~2/¢$)D, Phantom
(0222~ L Do Affine

()
This operation removes the deformation and swelling
dependence of the data. The new variable [S] is a
function of Dy and junction functionality only. In the
affine network, the junctions are embedded in their
surroundings and are fully affected by the macroscopic
strain. In the phantom network model, the junctions are
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Figure 1 Dependence of the configurational factor D, on chain length.
Points represent results from FTir. experiments from reference 1, with
dry PDMS networks. The two curves represent the affine and phantom
network limits obtained with the use of the RIS formalism

allowed to fluctuate, with amplitudes depending on
the network topology as indicated by the junction
functionality. The deformation at the molecular level and
therefore the segmental orientation are less affected by
macroscopic strain.

According to the theory!4, D, varies as the inverse
of the number of bonds »n in the chain between
two junctions. Thus, a plot of the reduced orientation
function as a function of n~! gives a straight line
as shown in Figure 1. Both lines are drawn by
using equation (3) for a tetrafunctional PDMS network
with the proper value of D, obtained from the
previous rotational isomeric state (RIS) calculations.
Here, D, is representative of the orientation of vectors
along consecutive oxygen atoms. The points represent
results of FTir. experiments on end-linked PDMS
networks obtained previously! from the slopes of the
straight lines passing through S versus A%2—1/4 points.
The experimental data represent, like the calculations,
the orientation of vectors along the consecutive oxygen
bonds!>*. The occurrence of the experimental points
between the affine and the phantom network predictions
indicates that the state of deformation at the molecular
level is intermediate between those in the phantom and
the affine network models. This conclusion is in
agreement with the predictions of the constrained
junction model for segmental orientation. In the next
section, we briefly review the molecular aspects of the
constrained junction model.

Summary of the constrained junction model and application
to segmental orientation

The detailed picture of the constrained junction model
of amorphous networks follows from the work of Flory®
according to which intermolecular contributions are
represented in the form of spring-like constraints
hindering the fluctuations of junctions. These constraints

* FTir. experiments measure the orientation of the vector bisecting the
CH;-Si—-CH, bond. Passage to the orientation of the vector along the
O-O direction is made by the expression:

_R-1 2
" R+2(3cos? f—1)

where f is the angle (=90°) between the two directions stated above

£s]
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(a)

Figure 2 (a) Schematic representation of a network chain between
two junction points A and B. Thick and thin curves represent the
instantaneous configuration of a real chain and that of a phantom
model chain, respectively. Arrows indicate the constraints from the
surroundings. (b) Constrained junction chain in which the action from
the surroundings is concentrated at the junctions only. Junctions
fluctuate within the indicated elliptic domains referred to as the
constraint domains

are assumed to result from entanglements among chains
in the connected network structure. In the absence of
connectivity, they are expected to vanish. The fact that
such intermolecular effects are concentrated at the
junctions is of mathematical convenience. A later
treatment!®, referred to as the constrained chain model,
assumed the constraints to operate directly on the chains.
The general features of rubber elasticity and birefringence
predicted by this model are qualitatively similar to those
of the constrained junction model*5”.

A somewhat pictorial representation of an entangled
chain AB in a network is shown in Figure 2a. The line
AB indicates the time average location of the chain ends
as would be obtained in the phantom network. The thick
curve is representative of an instantaneous configuration
of the chain. The excursion of the chain to positions away
from the requirements of the phantom network in the
deformed state results in the ‘spring-like’ reactions of the
neighbouring chains as shown by the various arrows in
the figure. These are intermolecular forces absent in the
phantom and the affine network models. In Figure 2b,
these forces are concentrated on the junctions only. Each
junction is assumed to be under the action of two forces:
(1) the intramolecular elastic force from the network
connectivity, trying to restore the junction to its mean
position as obtained in the phantom network; and (2)
another spring-like force arising from the distortions of
the surroundings, trying to restore the junction to a
point referred to as the centre of constraints. In the
absence of constraints, the junction fluctuates in a
spherical domain with an average squared radius of
{AR?Y=[(¢—1)/d(¢—2)] {r*), which is independent
of macroscopic strain®. In the absence of network
connectivity, the junction is assumed to fluctuate in a
region referred to as the constraint domain. The
macroscopic strain is assumed to deform the constraint
domains affinely. The two ellipses at the extremities of
the network chain in Figure 2b are drawn to indicate the
spatial range of constraint domains. The distortion of the
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surroundings results in a further orientation in the
domain.

The strength of the constraints varies inversely
with the size of the constraint domain. Infinitely
strong constraints do not permit fluctuations of the
junction at all and the junctions are securely embedded in
their environments. This extreme case represents the
affine network model. The strength of the constraints
diminishes as the constraint domain enlarges. As the
network is stretched, the constraint domains deform into
ellipses and their effect on the junction becomes more
anisotropic. The strength of intermolecular constraints
in the undeformed network is represented in the theory
by the parameter x defined as:

_<{AR*),

T a5y, @

where the numerator and the denominator represent the
mean square radii of fluctuation domain of the junction
in the phantom network and the constraint domain,
respectively®!®. In terms of the molecular weight, M,
between junctions and v,,, k is given by the relation:

k=CM}v,, (5)

with the proportionality constant C~0.07 obtained from
previous data on PDMS networks®18,

In the constrained junction model, the mean squared
extension ratio, A2 at the molecular level along the
direction t reads®:

A?=(1-2/$)A} +(2/$)1+B)
where B, is
B,=x*(A? - D/(x + A)*

t=x,y,z (6)

t=x, ), 2 €))

The orientation of chain segments results from the
anisotropy of deformation at the molecular level.
The orientational field resulting from the anisotropic
distortion of the constraint domains may further induce
an orientation, as has been previously suggested®.
Accordingly, the distortion of the constraint domains is
described by the three quantities:

O}=1+AB/x  t=x,y,z (®)
In uniaxial tension the state of segmental orientation is
described by the two expressions®:

§'=Do[A2—(A2+A2)2]
§"=eDo[02—(@3+02)/2] ©)

Here, the coefficient e is adopted to represent the strength
of the local orientational field arising from the distortions
of the constraint domains. The total orientation is the
sum of §’' and §”. Using equations (6), (8) and (9), the
reduced orientation defined by equation (3) for uniaxial
extension is written in the following form:

2/3
/2™ £ B By +(Be/ 2003 Bx zgay)]}

=(1— 14—
[51=(1 2/¢)Do{ T

(10)

When k=0, as B, scales with x? for small «, the term in
square brackets on the right-hand side of equation (10)
becomes zero and the reduced orientation for the
phantom network model is recovered. The term in square
brackets also goes to zero as « increases indefinitely.
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Comparison of experimental data and the constrained
junction model predictions

Results of experiments on samples A and B in Table
1, with respective molecular weights M,=12000 (open
symbols) and 23 000 (closed symbols) are shown in Figure
3. In this figure, the reduced orientation is presented as
a function of «~!. Experimental points at lower values
of a showed excessive scatter and are therefore not
included. The straight lines are least squares fits to the
points. The curves are calculated from equation (10) with
the values of the parameters listed in Table 1. The
tendency of [S] values to decrease with increasing « is
clearly seen. This feature is also seen in the birefringence
data of reference 8. It is interesting to note that the o~ !
intercepts of the straight lines in Figure 3 meet with the
intercepts of the theoretical curves obtained from RIS
calculations®. It should be noted that the values for x
and e in Table I follow from previous experimental data®,
thus the theory contains no adjustable parameters. The
experimental points and theory tend to diverge at smaller
values of «. The theoretical curves level off as a=1 is
approached while the experimental [S] values increase,
exhibiting a Mooney-Rivlin type behaviour. The largest
discrepancy between the theory and the straight lines

Table 1 Values of parameters used in the calculations of orientation
from equation (10)

Sample M, K [STpn” ¢

A 23000 10.7 0.001045 0.5
B 12000 7.7 0.002000 0.5
C 10000 7.0 0.002405 0.5
D 2000 3.1 0.012025 0.0
E4 7600 5.5 0.004050 0.5

4Calculated from equation (5)

®Obtained from RIS calculations® of D,

<The value of 0.5 was obtained in previous work® on stress-strain
isotherms of PDMS

4From birefringence data®

The networks were tetrafunctional, ¢ =4. Crosslinking and measurements
were performed in the bulk state for all samples. Results?® for the
network with M_= 5000 have not been included because of excessive
scatter in the data
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Figure 3 Reduced orientation {S] as a function of «~!. Open and
closed circles represent the experimental data for dry PDMS network
chains of M =12000 and 23000, respectively. Curves result from the
constrained junction model, using the variables listed in Table I. Best
fitting straight lines through the experimental data are also shown
(broken line)
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Figure 4 Reduced orientation [S] as a function of « ™ *. Open triangles,
circles and squares are the experimental data for dry networks with
M_=2000, 10000 and 23000 as labelled in the figure. The solid circles
represent results of birefringence experiments with M,=7600. Curves
are obtained with the constrained junction model, using the variables
listed in Table 1. The broken curve is obtained for sample D usingx =1

through the data is at «=1 and amounts to 25 and 26%
for samples A and B, respectively.

Predictions of the constrained junction model and
experimental data are further compared in Figure 4. The
open triangles, circles and squares are from FTir.
dichroism experiments! for the respective networks with
M_=2000, 10000 and 23000 as labelled in the figure.
The closed circles represent results of birefringence
experiments. The birefringence data are multiplied by a
proportionality constant inasmuch as birefringence and
orientation are related by a constant coefficient as
described in detail below.

The parameters used in the calculation of the curves
according to equation (10) are given in Table !. Except
for the value e =0 for sample D, no parameter is adjusted
in the calculations. The maximum discrepancy between
theory and experiment is for sample D with the smallest
M,. The curve is calculated from theory with x=3.1
resulting from equation (5). The theoretical prediction for
[S]is ~26% higher than the experimental value at a=1.
It is calculated that the choice of x=1.0 instead of 3.1
leads to a good agreement with experiments, as shown
by the broken curve in Figure 4. This observation is in
line with results of computer simulations by Adolf and
Curro!® where a stronger dependence of x on M, is
predicted instead of that given by equation (5).

The curve obtained from birefringence experiments in
Figure 4 closely agrees with the deformation dependence
expected from equation (10). The agreement is much
better than that of the FTir. data, most probably due
to large scatter in the latter. A possible source of the
difference between birefringence and FTi.r. results may
be due to the procedures in measuring the deformation.
The birefringence data were obtained by the successive
application of dead weights to the sample and measuring
changes in length. The measurements in FTi.r. were made
by keeping the two ends of the sample fixed at specified
distances. Furthermore, orientation measurements in
FTi.r. required rotation of the stretched sample parallel
and perpendicular to the direction of polarization of the
light source.

POLYMER, 1993, Volume 34, Number 9 1861
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INTRA- AND INTERMOLECULAR
CONTRIBUTIONS TO SEGMENTAL
ORIENTATION

Orientation of segments in a real network differs from
that in the phantom model in two respects, according to
equation (10). First, the chains in the real network deform
more than those in the phantom model depending on
the magnitude of the x parameter. Secondly, segments
experience a local orientation field resulting from the
distortion of the constraint domains. The latter is
introduced into the theory in an ad hoc manner by the
coupling parameter e in equation (10). In addition to
these two sources of orientation, there may exist local
interchain interactions among neighbouring segments.
Such interactions exist inherently due to the linear
connectivity of the chains, in the network as well as in
the bulk state, and result in the enhancement of segmental
orientations?®. In previous work>21:2?, this type of
intermolecular interaction has been attributed to the
tendency of two neighbouring segments to align as
obtained in nematic liquid crystalline systems. Recent
treatment of networks by a lattice model?*-2* shows that
such nematic-like interactions exist in semiflexible chains
with relatively large length-to-width ratios of their Kuhn
segments. Such interactions are therefore specific to the
system and should be negligible in highly flexible chains
such as PDMS. In any case, their action may be brought
into the theory? by allowing for the distortion of the unit
vector u, of the isolated chains by an amount Au such
that the modified configurational factor D becomes:

D= {3¢[ro(uo +Au)]*>o/<r*po —1}/10
=Dy +3¢{Au? cos? 6)/10=Dy + D, (11)

Here ¢ is the angle between Au and r. The intermolecular
contribution D,_, is, according to Jarry and Monnerie?!:

_ v
ml_l_V

Here, V reflects the intensity of interactions between
orientations of neighbouring segments. According to the
lattice model?®24 V equates to:

1 T
V= +
(64/5x)1—x/x)+1 5

Here, T is the reduced temperature accounting for the
strength of the nematic interactions, x is the length-to-
width ratio of Kuhn segments composing the network
chains and x, is the critical value of x above which
the unperturbed system is totally anisotropic. The
intermolecular contribution is expected to vanish readily
by swelling the network with a suitable solvent.

A further contribution to orientation due to trapped
entanglements has been suggested by Herz et al.>® and
Deloche et al.2%27, According to their theory, such
contributions persist even in the swollen network, but
their effects should vanish if the networks are originally
formed in the highly diluted state. One may therefore
separate the contributions from intermolecular sources
into a local and an entanglement component and
rewrite equation (11) in the following form as a first
approximation:

D D, (12)

(13)

D=Dy+D,v,+D,v,, (14)

Here, D, reflects the contributions from local intermolecular
correlations and D, is due to the field induced by trapped
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Figure 5 Effect of swelling on segmental orientation of deformed PIP
and PDMS networks. The three upper sets of experimental data are
for PIP networks with the indicated volume fractions v, during
deformation. The data points on the lowest curve are measured for
PDMS networks with v, =1.0 (solid circles) and 0.56 (open circles). The
two curves for v,=1.0 are obtained from the constrained junction
theory with no adjustable parameters. The intermediate curves
necessitated readjustment of the front parameter D to account for
intermolecular effects

entanglements. Strong contributions from D, have been
reported previously’ for the orientation of polyisoprene
(PIP) networks by polarized fluorescence measurements.
Results of F Ti.r. experiments on swollen PDMS networks
reported in the paper?® show however that D, is not
significant for this system. The effects of swelling on
segmental orientation are compared in Figure 5 for PIP
and PDMS networks. The upper set of solid points show
results of measurements on a dry PIP network. The curve
through the points is obtained according to the
constrained junction model’. Resulits for the network in
the swollen state with v,=0.88 and 0.81, are shown by
the open circles and triangles, respectively. A very strong
decrease in [S] is obtained by small amounts of swelling
as seen in the figure. The theoretical curves obtained with
v, =0.88 and 0.81 showed imperceptible differences from
that of the dry network. It was not therefore possible to
fit a theoretical curve through the data for v, # 1 without
modifying the front parameter D. The two curves through
the data points for the swollen samples in Figure 5 are
obtained by choosing D=0.008 and 0.0066 for v,=0.88
and 0.81, respectively. This decrease in D may be
attributed to the disappearance of intermolecular effects
upon swelling, as delineated in equation (14). The lowest
curve and the corresponding data points are obtained
for the PDMS network?® B with v,=1 and 0.56.
The differences between the two data sets are not
discernible in the figure in parallel with the predictions
of the constrained junction model. This indicates that
intermolecular contributions to the configurational factor
D are negligible in PDMS networks.

In Figure 6, the effect of v, on segmental orientation
in PDMS networks is shown?®, Solid circles are obtained
for sample B formed at v,.=1.0. The open circles are for
the network formed at v,,=0.7. The best fitting straight
lines through the data points are also shown. The curve
1s obtained from the constrained junction model for both
v,.=1.0 and 0.7. While the theory predicts no effect on
reduced segmental orientation from dilution during
formation, the experimental data show some decrease.
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Figure 6 Effect of v,. on segmental orientation in PDMS. The solid
and open circles represent [S] values measured for the respective values
of v,,=1.0 and 0.7. Best fitting straight lines and the theoretical curve
from the constraint junction model are also displayed

The magnitude of the decrease, however, is within
experimental error bounds.

The absence of contributions from D; and D, terms
to the configuration factor D in PDMS networks justifies
the close agreement between measured orientations and
the RIS calculations performed in previous work®.

RELATIONSHIP BETWEEN SEGMENTAL
ORIENTATION AND STRAIN BIREFRINGENCE

Correspondence between the reduced birefringence and
reduced orientation function

Measurement of strain birefringence of deformed
networks is an alternative technique for determining
the degree of orientation of chain segments. This
technique detects the changes in the components of the
polarizability tensor of chain units under deformation.
As will be shown in this section, these changes
may be related, quantitatively, to the configurational
factor Dy introduced above for characterizing segmental
orientation.

In FTir. experiments, the orientation of a specific
direction rigidly affixed to the chain is measured directly.
The components of the polarizability tensor, on the other
hand, include contributions from segments neighbouring
a chosen segment. In the bulk state, mutual alignment
of neighbouring segments therefore contributes to the
measured birefringence. Thus, this technique is very
sensitive to intermolecular effects, and its correspondence
to FTir. experiments can be made only in the highly
diluted state of the network where the chains are
sufficiently separated from each other. Another requirement
for comparison is that the diluent should be isotropic
inasmuch as a slight anisotropy of the solvent molecules
will superpose on the optical anisotropy tensor of the
chain units.

Experimentally®, the difference An,,=n,—n, in the
refractive index of a stretched sample along the direction
of stretch x and the lateral direction y is measured.
According to theory, the reduced birefringence [An,,] is
given by the expression®:

Anxy(DZ/UZC)1/3

(@*—a™h)

[An,,]=

(02/020)2/3

(@/2—De*—a™")

x[B,—By+(¢e/2x)(/133,—/133y)]} (15)

vkT
=(1 —2/¢)—V— C{l +

0

where v/V,, is the number of chains per unit volume in
the reference state, k is the Boltzmann constant, T is
the absolute temperature and C is the stress-optical
coefficient given by:

C=2n(1*+2)*Ty/277kT (16)

Here, 71 is the mean refractive index of the network and
I' refers to the intrinsic optical anisotropy of a given
chain. The superscript zero indicates that the optical
anisotropy is obtained in the absence of intermolecular
interactions, i.e. in the state swollen with an isotropic
solvent.

The expression in braces on the right-hand side of
equation (15) is identical to the reduced orientation
expression given by equation (10). Accordingly, the
experimental data available for the reduced birefringence
[An,,] may be transformed into [S] by using the simple
relationship:

(s] (An,,] 17)

— 0

CvkT/V,
In the limit as «~' approaches zero, [An,,] assumes its
phantom network limiting value:

(AR, Jomaniom =(1 ~2/8) L € (18)
Ve

which provides a direct method of evaluating the factor
CvkT)V, appearing in the denominator of equation (17).
It is noted from equations (17) and (18) that the phantom
network limit [S] p,n0m Which is given by equation (3),
is recovered by extrapolating the [S] results to o~ =0,

Relationship between the optical anisotropy T} and the
configurational factor D, for PDMS

From molecular considerations I'J is expressed in
terms of the anisotropic part &; of the polarizability tensor
of the structural units of the chain as8*:

9
1"3=EZ T8 o/<r*>o (19)

The anisotropic part of the polarizability tensor may be
defined with respect to a coordinate system xyz, affixed
to the repeat unit of the PDMS chain. At a given
configuration of the chain, the angles between the x, y
and z axes of the ith unit and the chain vector are defined,
respectively, by ¢;,, ¢, ¢;;. In the approximation of
tetrahedral symmetry about Si and C atoms, selecting
the x-axis along the O...O direction, the y-axis perpen-
dicular to it, in the plane of the Si-O bond and
the z-axis parallel to CH;..CHj;, &; for each of the
dimethylsiloxane structural units 1<i<n/2 in a PDMS
chain of n backbone bonds is:

&, =Aa diag(2/3, 0, —2/3) (20)
where Aa is estimated® for PDMS to be equal to 0.018 A3,

* The symbol a is retained for the polarizability tensor to conform with
the conventional notation in literature and should not be confused with
the scalar o representing the stretch ratio
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Equation (19) may be written in terms of the angles ¢,,,
¢.,, ¢:. by projecting the tensor &; along the end-to-end
vector as:

A
02 2% 5 (P eos? by — (P cost 9,3 (1)
5r*>0
Upon rearrangement, equation (21) reduces to:
I'Y=nAa[Dy—Dy, ,]=3nAaD, (22)

Here D, and D, , refer to the orientational configurational
factors associated with the vectors along the O..0
direction and perpendicular to it, respectively. Inasmuch
as ir. dichroism experiments'> measure the orientation
of vectors along the O...O direction, D, ; is identical to
Dy and D, | is equal to —2D,,.

Comparison with experiments

Birefringence experiments performed with PDMS
networks of M_,=7600 in optically isotropic diluents
yield® T'9=0.04 A*> with carbon tetrachloride and
I'?9=0.14 A3 with tetraethyl methane. These values are
much smaller than those measured in the bulk state or
in the state swollen with anisotropic solvents. Adopting
the mean value for I'Y from the two experiments, as
suggested previously®, we obtain from equation (22),
D,=0.0081. It is noted that the configurational factor
for a chain of M, =7600 is obtained as! D,=0.0063 from
RIS calculations, which is in reasonable agreement with
the result of 0.0081 deduced from birefringence data.

According to equations (17) and (18), the quantitative
passage from [An, ] versus «~* curves of reference 8 to
[S] as a function of « ™! is readily done by dividing the
[An,,] values by their o~ ! intercept, and multiplying by
(1—-2/¢) D, This procedure has been adopted for plotting
the solid circles in Figure 4. The theoretical curve E has
been drawn by using the parameters listed in Table 1.

CONCLUSIONS

The following conclusions can be drawn from the present
study.

1. In general, segmental orientation for PDMS from
FTir. measurements is in agreement with RIS
predictions. Compared to all previous theoretical
work, which is based on the hypothetical Kuhn
segment model, the RIS formalism appears as a
quantitatively more realistic approach.

2. The experimentally observed strain dependence of the
reduced orientation which cannot be explained by
either affine or phantom network models, is suitably
accounted for by the constrained junction model of
rubber elasticity.

3. The weak dependence of segmental orientation on the
state of swelling during both network formation
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and measurements conforms with the front factor
(v2¢/v,)*" as delineated in equation (1).

4. The agreement between theory and experiments is
poorer with decreasing M_, which may be attributed
to the inadequacy of equation (5) to evaluate
the parameter x at high crosslinking densities, as
previously pointed out by Adolf and Curro!®.

5. Birefringence measurements of networks swollen with
optically isotropic diluents may be readily employed
to estimate segmental orientation and may be
interpreted with the same mathematical formulation,
as presented above.

6. Measurements of orientation in PIP networks indicate
that local intermolecular contributions to orientation
are significant as demonstrated by the rapid decrease
in [S] with swelling, in contrast to PDMS networks.
This brings into consideration the existence of stronger
intermolecular effects on segmental orientation in less
flexible chains.
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